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Abstract. The paper summarizes the results of research on the modeling and implementation of ad-
vanced planning and scheduling (APS) systems done in recent twenty years. It discusses the concept
of APS system – how it is thought of today – and highlights the modeling and implementation chal-
lenges with which the developers of such systems should cope. Some from these challenges were
identified as a result of the study of scientific literature, others – through an in-depth analysis of
the experience gained during the development of real-world APS system – a Production Efficiency
Navigator (PEN system). The paper contributes to APS systems theory by proposing the concept of
an ensemble of collaborating algorithms.
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1. Introduction

Advanced planning and scheduling (APS) systems already have a long, more than twenty
years history. A plenty of research papers discussing the various aspects of APS systems
were published in these years. However, it seems that none of them concentrates on the
modeling and implementation challenges in APS systems. The questions “What is the na-
ture of these challenges?”, “How many challenges and to which extent were answered?”,
“What are the modeling and implementation problems that remain unsolved?” still have
no exhaustive answers grounded on a systematic investigation of these questions. This
paper summarizes the research done in this field, discusses the concept of APS system
from today’s point of view, aims to answer some among above listed questions and con-
tributes to APS systems theory by proposing the concept of an ensemble of collaborating
algorithms.

*Corresponding author.



582 A. Lupeikiene et al.

The results are based on two sources: the analysis of research papers, which investi-
gate APS systems, and the experience of authors gained working in a real-world project
called Production Efficiency Navigator (PEN system) for development of a particular APS
system.

The PEN system is an APS system, which is oriented to the make-to-order one-plant
manufacturing systems and implements a predictive-reactive scheduling approach, which
combines both predictive medium-term planning and scheduling, and replanning and
rescheduling. It should be used together with some ERP system as an ad-on for this sys-
tem. The input of the PEN system, when it works in replanning and rescheduling mode,
includes: description of the detected exception; actual state of running plan or schedule
that should be repaired; and search strategy constraints. Data about the actual state of the
plan or the schedule under consideration must be downloaded from the ERP. Constraints
on the search strategy (e.g. to search keeping the current deadline, to search keeping the
current budget, etc.) must be set when invoking the system. In addition, enterprise map,
decision matrix, models library, simulation and optimization procedures library, goals
table, management focus, resources and materials tables, and thresholds table must be al-
ready stored in the system and accessible for its modules. The materials table describes
the acceptable substitutions of the materials that were foreseen in the material require-
ments plan. The output of the PEN system is a set of repaired plans/schedules (one for
each alternative) and their summaries. The repaired plans/schedules can be optimal or
near optimal. In some cases the system is not able to absorb the negative impact caused
by the occurrence of exception and to repair the plan or schedule. In such cases it gen-
erates the empty set of results. It means that full replanning from the scratch must be
done by ERP system. The summary of a plan/schedule includes a numerical estimate of
solution taking into account the multiple criteria character of the problem caused by the
stated optimization goals. For details the reader is referred to Caplinskas et al. (2012).
PEN System differs from the other similar APS systems in three aspects: (a) it provides
specific rule-based mechanisms for production re-scheduling process allowing to take into
account knowledge about a specifics of production system of a particular enterprise; (b)
it offers special functionality – sandbox functionality – to experiment with the multiple
scenarios for special events, risks or failures; (c) it implements the schedule optimization
algorithms taking into account business goals and management focuses. The PEN project
confirmed that the modeling and implementation challenges discussed in our paper were
also incident to this project.

Despite the great amount of quoted research papers this paper does not pretend to be the
Systematic Literature Review on the topic. There were chosen only these sources, which,
in our opinion, are representative for the discussed approaches and present the significant
results.

The remain of this paper is organized as follows: Section 2 analyzes the concept of APS
system from today’s perspective, Section 3 describes the identified modeling and imple-
mentation challenges of APS systems, Section 4 discusses the concept of an ensemble of
collaborating algorithms and, finally, Section 5 concludes the paper.
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2. Advanced Planning and Scheduling (APS) Systems

2.1. Evaluation of Current Manufacturing Planning and Control Systems

The concept of advanced planning and scheduling was developed by join efforts of sci-
entists and software developers as an answer to the challenges posed by limitations of
the classical ERP systems. For example, even in advanced ERP systems lot sizing and
sequencing are considered as independent decisions, bill of materials typically does
not include routing data, it is difficult to maintain the consistency between master pro-
duction schedule and plant floor level schedule, and to evaluate all the effects on fi-
nal customer orders caused by occurrences of unpredicted events at plant floor level.
ERP schedulers cannot take into account the material constraints, changeover constraints,
sub-resource allocation constraints, multi-task constraints and the other complex con-
straints. They are unable to optimize bottleneck processes (Consortium PSLX, 2005;
EyeOn, 2014).

The core of any early ERP system was so-called material requirementsplanning (MRP)
system. Such ERP system can be defined as “as an integrated system for production plan-

ning and control, with level-by-level bill-of-material explosion and netting as its core

functionality” (Peeters, 2009). Such systems prepared production plans in two steps (Con-
sortium PSLX, 2005; Bubenik, 2011; Theeuwen, 2007). In the first step, they calculated
material requirements, using forecast or master production schedule as input data and as-
suming infinite capacity, in the second step – the amount of capacity required. In other
words, the materials and capacities were planed separately. Availability of capacities was
taken into account very late in the production process. Therefore the plans, prepared using
such stepwise procedure, were often not feasible because the system “allows the release
of work orders to the shop floor without consideration of component parts availability”
(Ptak and Smith, 2008). In order to transform a not feasible plan into executable one, input
data should be changed and the whole planning procedure repeated over again. The system
did not suggest, what changes in input data should be done. Besides, even in cases when
feasible schedules for shop floor activities were prepared, they were not optimized and
often were postponed by shop floor control staff in order to optimize operation sequence
of work orders (Hopp, 2007).

Later MRP procedure was replaced by MRPII procedure. In this extended procedure
material requirement planning was followed by capacity requirements planning, schedul-
ing and other sequentially executed planning procedures (Hopp, 2007). Due to its sequen-
tial nature, the planning process did lead to long processing times. Consequently, this
causes long planning cycles, which, in turn, cause that final planning results become out-
dated. Besides, planning and scheduling remains based on unlimited resource availability,
MRPII cannot perform cross-plant planning, including logistics and distribution, and has
many other shortcomings because at the core of MRPII still remains basic production
planning principles developed in 1950’s (Ptak and Smith, 2008). Due to the very limited
optimization of shop floor schedules, the users should do optimization manually using
Excel™, Access™ or even sticky notes and scheduling white boards (Ptak and Smith,
2008).
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2.2. The Concept of APS

The concept of advanced planning and scheduling was developed in the mid 1990s with
the intention to solve the above mentioned problems. However, up to date, there is not
generally accepted definition of a term Advanced Planning and Scheduling (APS) System
exists. This term is still widely used ambiguous.

Some sources define this term at conceptual level considering APS systems as a new
approach to manufacture planning. For example, in Consortium PSLX (2005) an APS sys-
tem is defined “as a system and methodology in which decision-making, such as planning

and scheduling for industries, is federated and synchronized between different divisions,

within or between enterprises, to achieve total and autonomous optimization”. Accord-
ing to this definition, APS system is not a part of ERP, but rather an entire planning and
scheduling system within an enterprise. So, planning and scheduling process is thought
of as a primary aspect of decision making in manufacturing enterprises. More exactly,
decision-making is perceived as a process of determining information related to plan-
ning and scheduling of business activities within an enterprise. This process encompasses
all the business activities that create and manage information required for planning and
scheduling. These activities are considered from two different points of view: administra-
tive and functional. From the administrative point of view, all the business activities are
grouped according to particular business objectives or problem domains such as produc-
tion management, inventory management or plant engineering. The functional point of
view shows functional aspects of business activities, such as plan, order or schedule man-
agement functions, which relate these activities to planning and scheduling. Relationships
between those two views can be established for every their combination.

In our opinion, such an understanding of APS system is revolutionary ones because it
states that APS is not part of ERP but rather, vice versa, ERP has its purpose to support
APS system. This fact changes the understanding of what a functional structure of man-
ufacturing enterprise should be and even a philosophy beyond Management Information
Systems (MIS) in general. If in the past a MIS first of all was thought of as a transaction
processing system, which possibly includes a decision-support subsystem, now it should
be thought of first of all as decisions simulation and optimization system supported by
a decision-oriented transaction processing system running as one of its subsystems. The
main purpose of MIS is to suggest the alternative decisions, which can be made by man-
agement, and for each alternative to generate and evaluate scenarios describing possible
impacts and consequences. Of course, the system should not pretend to replace the man-
agers. It should only empower the managers by narrowing the set of alternative decisions
and allowing them to consider only the near optimal and therefore perspective ones.

Other sources define the term APS system rather at realization level considering them
as software products. One of the most popular product-orienteddefinitions of APS system
is given by the Association for Operation Management (APICS). Although APICS dic-
tionary states that APS is a collection of techniques that deal with analysis and planning
of logistics and manufacturing during short, intermediate, and long-term time periods, it
defines APS system as:
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“. . . any computer program that uses advanced mathematical algorithms or logic to

perform optimization or simulation on finite capacity scheduling, sourcing, capital

planning, resource planning, forecasting, demand management, and others. These

techniques simultaneously consider a range of constraints and business rules to pro-

vide real-time planning and scheduling, decision support, available-to-promise, and

capable-to-promise capabilities. APS often generates and evaluates multiple scenar-

ios. Management then selects one scenario to use as the “official plan” (Blackstone,
2010).

According to product-oriented point of view, APS system does not substitute but only
supplement or extend existing ERP systems (Rohde, 2005). The ERP system handles basic
activities and transactions, such as customer orders, accounting, etc., whereas the APS
system handles daily activities for analysis and decision support. It can be implemented
as a subsystem of a particular ERP, as an add-on to a number of different ERP or as a
stand-alone package which can be executed autonomous as well as in cooperation with a
particular ERP.

Regardless of how an APS system is implemented – as a subsystem of a particular
ERP or as an add-on to some number of different ERPs – it is seen as a source of com-
plementary functionality and can be used together with only those ERP systems which
are precisely defined in advance (Texeira and Coube, 2009). These two cases, however,
differ significantly from the modeling point of view. If an APS system is implemented
as a subsystem of a particular ERP, it is an integral part of this ERP and should meet its
internal modeling, architectural, and implementation standards. It is not a case if an APS
system is implemented as an add-on to ERP and even more so when it is implemented as
a standalone software package. In such cases it is not expedient and often even impossible
to extend internal ERP standards to the APS system.

Although, in general, APS systems support complex planning and scheduling tasks, it
is not simple to explain, what does really mean “a complex planning and scheduling task”
(Kjellsdotter, 2012). The term APS system is rather ambiguous. Most of the APS systems
are industry-specific and differ in many aspects including planning concepts, planning
tasks, planningmethods, plans’ optimization procedures, and even in the used terminology
(Kilger and Wetterauer, 2005). On the other hand, they have a number of commonalities
and form a family of congenerous systems which is characterized by these commonalities.
Grouping can be done at different levels: by common business objectives, by common
problem domains, by set of typical problems and by set of typical features. Let us discuss
these levels in more details.

At business objective level, the family of APS systems can be defined by the fol-
lowing common objectives (de Santa-Eulalia et al., 2011; Bitran and Tirupati, 1989;
Öztürk and Ornek, 2014; Fleischmann et al., 2005): (1) to minimize losses of the ma-
terial, financial, workforce and other recourses; (2) to better manage the risks and more
adequately respond to them; (3) to increase robustness and agility of the production and
other plans; (4) to reduce planning time and to improve responsiveness of the planning
system; (5) to link the strategic, tactical, and operational level planning decisions in more
effective way, emphasizing the integration of planning and scheduling processes; (6) to
increase the integration of the internal supply chain; (7) to extend the risk management



586 A. Lupeikiene et al.

from an internal to an external supply chain point-of-view (holistic optimization) paying
more attention to the stochastic behavior of this chain and to the multi-tier collaboration
among its entities (collaborative planning); and (8) to make the order fulfillment and other
processes more transparent.

Each APS system supports all or part of the above listed objectives, but even the whole
family supports them only to some extent. For example, many APS systems implement
algorithms for holistic optimization and collaborative planning, but these problems are
indeed not properly solved. The holistic optimization still cannot cope properly with situa-
tions where some entities belong to a number of different supply chains. The big challenge
remains for the collaborative planning to interconnect different business models because
this requires to share strategies, timely information, re-sources, profits and losses among
supply chain entities (de Santa-Eulalia et al., 2011). The holistic optimization and collabo-
rative planning problems are properly solved almost exclusively in the cases of centralized
control of the whole supply chain. It is because in such cases supply chain management can
be seen as a simple extension of an internal integrated supply chain management (Zijm,
2000).

The common problem domains of APS systems were analyzed and defined by a
number of authors (de Santa-Eulalia et al., 2011; Meyr et al., 2005; Blackstone, 2010;
Stadtler, 2004; Theeuwen, 2007). They are as follows: (1) strategic network planning;
(2) demand planning; (3) demand fulfillment and available-to-promise; (4) master plan-
ning; (5) production planning and scheduling; (7) distribution planning; (8) transport plan-
ning; and (9) purchasing and material requirement planning. Each APS system is able to
solve problems in all or in some subset of these domains. Usually it provides a separate
subsystem for each problem domain. Many APS systems can solve certain problems in
additional problem domain, namely, in: (10) safety stock planning. The purpose of safety
stock planning is to install buffers – in the form of either safety stocks or safety times –
in order to mitigate impacts of unpredicted business events. However, the safety stock
planning cannot be implemented as a separate subsystem because the buffering is a cross-
cutting concern. Besides it is an industry-specific procedure depending on the locations
of the decoupling points (Tempelmeier, 2001).

Current APS systems include the full spectrum of enterprise and even inter-enterprise
planning and scheduling functions (Malindžák et al., 2011). They can plan and schedule
work-force, procurements, distribution, sales and other manufacturing related processes.
However, APS systems were developed primarily with the aim of improving the produc-
tion planning and shop floor scheduling. It happened forasmuch the classical ERP sys-
tems were rather transactional than planning the. They paid limited attention to the in-
tegration of planning and scheduling activities and performed them sequentially, well-
nigh ignoring their relationships (Moon and Seo, 2005). A production plan provides the
route, processes, process parameters, machines, and tools required for production (Chang
and Wysk, 1985). A shop floor schedule allocates the operations to time intervals on the
machines. Thus, production planning and shop floor scheduling are highly interrelated
and it is impossible to prepare realistic schedules without their proper integration (Mar-
avelias and Sung, 2009; Chen and Ji, 2007). So, at shop floor level classical ERP systems
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frequently raised serious problems such as varying workloads, changing bottleneck, etc.
In some situations, especially in cases when objectives of the production plan and shop
floor schedule conflict, no feasible schedule can exist at all (Chen and Ji, 2007). There-
fore at shop floor the original plans often were modified (Tan and Khoshnevis, 2000;
Chen and Ji, 2007). Mostly this was done in an informal way. The changes, even if they
were done following some formal procedure, could not be feed back to the planning level.
As a result, discrepancies aroused between plans and production schedules, or solutions
overlapped or even partly duplicated each other (Tan and Khoshnevis, 2000). This situ-
ation leaded to the integration of production planning and shop floor scheduling activi-
ties in APS systems. These systems simultaneously plan and schedule production taking
in account available materials, workforce and plant(s) capacities (Bubenik, 2011). Plan-
ning and scheduling activities cooperate as partial stages of the integrated process, al-
lowing overlapping the planning of operations with their allocation in time (Garrido and
Barber, 2001). The integrated system can simultaneously take into account constraints
at both enterprise and plant levels, consider materials and capacity issues together, and
integrate production, distribution, and logistics management issues (Hvolby and Steger-
Jensen, 2010).As a result, a single optimization problem should be solved. Often this prob-
lem is addressed as main (or general) advanced planning and scheduling problem (APSP)
(Moon et al., 2004; Moon and Seo, 2005; Zhang and Gen, 2006; Chen and Ji, 2007;
Lee et al., 2002).

Although the list of features supported by an APS system depends on branch of
industry and many other circumstances, the analysis of the population of such sys-
tems shows (Hvolby and Steger-Jensen, 2010; Öztürk and Ornek, 2014; Bubenik, 2011;
de Santa-Eulalia et al., 2011) that almost all APS systems have the following features:
(1) the planning engine that is based on optimization and constraint-based planning al-
gorithms, is able to generate near optimal plans and use some simulation techniques al-
lowing the simulation different planning scenarios before a plan release; (2) the ability
to take into account constraints at enterprise level as well as at plant level what enables
to create plans which satisfy multiple objective goals and are near optimal according to
financial and other strategic objectives of an enterprise; (3) the ability to consider the
potential bottlenecks explicitly; (4) the ability to plan and schedule production taking in
account available materials, labor, and plant capacity simultaneously; (5) finite capacity
planning at the shop floor level (the sequence in which jobs are carried out effects the
set-up time); (6) hierarchical planning encompassing all planning levels from strategic
to operational one, and coordinating and integrating vertical and horizontal information
flows among problem domains; and (7) integration of forecasting, manufacturing, distri-
bution, and transportation issues. The difference between constraint-based planning and
optimization is that constraint-based planning produces feasible but not necessarily op-
timal plans because only constraints but no plan optimization objectives or criteria are
considered. Horizontal flows stream among problems and coordinate the processing of
customer-oriented information, such as, for example, customer orders, sales forecasts or
purchasing orders (Fleischmann et al., 2005). Vertical flows stream downward and up-
ward among plans of different level and are used to harmonize these plans. For details,
the reader is referred to Fleischmann et al. (2005).
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2.3. Benefits and Shortcomings of APS

The potential business benefits of APS systems were discussed by many researchers (e.g.,
Bubenik, 2011; Texeira and Coube, 2009; Kjellsdotter, 2012; de Santa-Eulalia et al., 2011;
Öztürk and Ornek, 2014; Fleischmann et al., 2005; Kjellsdotter, 2009; Chen et al.,
2012; Kjellsdotter and Jonsson, 2010; Kjellsdotter, 2012 and Stadtler and Kilger, 2005;
Wortmann, 1998; Kennerley and Neely, 2001) and reported by a number of industrial
bodies (e.g., EyeOn, 2014; Blackstone, 2010; Aziz, 2002; Kallrath and Maind, 2006;
Consortium PSLX, 2005; HInQu Informatics, 2014). These benefits can be summarized
shortly in as follows. APS systems significantly improve the quality of plans due to the
simultaneous consideration of both business rules and range of constraints at enterprise as
well as at plant level and due the possibility to evaluate multiple alternative “what-if” sce-
narios. Production plans prepared by such systems are harmonized, feasible with realistic
manufacturing deadlines. They integrate manufacturing, distribution, and transportation
issues. A single plan provides both long-term aggregate activities and short-term opera-
tions performed at shop floor. Multiple planners can access data from this plan simultane-
ously. The potential of personnel, machines, material and other resources is used in more
performance-supporting and cost-effective way, materials and capacity issues are consid-
ered simultaneously. APS systems allow multi-site, multi-product planning, scheduling
and control in real-time, taking into account the dynamic nature of production process.
Due to the prompt planning and near-optimal scheduling, APS systems significantly re-
duce orders’ throughput times. They can plan all supply chain facilities simultaneously
and helps to synchronize hundreds of planning decisions at strategic, tactical and opera-
tional levels across the whole supply chain. APS systems allow creating plans satisfying
the multiple objective goals. Potential bottlenecks are considered explicitly. Trading part-
ners can be effectively involved in the supply chain planning process because the schedule
information can be shared, workflow-driven exception messages about the critical issues
across the whole supply chain can be sent simultaneously to both internal planners and
trading partners and the required feedback can be received from these partners immedi-
ately. Finally, APS systems work with an implementation-independentabstract data model
and therefore are insensible to the changes in accompanying software caused by the mod-
ification of business processes.

On the other hand, APS systems are not a silver bullet. They have also a number of
shortcomings. The optimism about the real possibility to achieve potential business ben-
efits promised by APS systems flagged already about ten years ago after a number of
ambitious APS-based projects failed to do this Kilger (2005). A significant limitation of
APS systems is their ability to cope with the uncertainties (Ptak and Smith, 2008) De-
spite the robust planning (van Landeghem and Vanmaele, 2002; Aghezzaf et al., 2011;
Pimentel and Brem, 1994; Aghezzaf, 2010) and the other theoretical achievements (Kim
et al., 2011; Al-E-Hashem et al., 2011), this still remains a serious problem (Wu et al.,
2011). For exhaustive discussion on this topic the reader is referred to Graves (2011).

A serious shortcoming of APS systems is their need for tremendous amount of data
required for the optimization of plans and schedules. The scheduling typically requires
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detailed routing information about resource requirements (operation sequence, primary
and secondary resources, machine-specific processing times, sequence-specific setup
time, parallel operations, alternate operations, material requirements tied to an operation)
(Hamilton, 2014). In addition, the availability of resources permanently changes and data
about these changes (machine down time, hourly changes in head counts, etc.) also are
required. It is far not simple to maintain such amount of data.

Another significant shortcoming of current APS systems is their inability to support
properly negotiation and collaboration schemas among trade partners (de Santa-Eulalia
et al., 2011). The negotiation abilities are vital, because trade partners maintain different
business models and pursue different business goals. Although in theory, a single APS
system is able to optimize all plans across the whole supply chain, in practice this is usu-
ally impossible because of different, sometimes even contradictory objectives of different
partners. In addition, many enterprises still cannot achieve the integration of their inter-
nal supply chains. Thus, according to de Santa-Eulalia et al. (2011), current “APS systems
faces important barriers related to interconnection among business models, which requires
sharing strategies, timely information, resources, profits and loss”.

In general, the ability to optimize only a production plan across the trade partners in the
supply chain still remains a great challenge (Hvolby and Steger-Jensen, 2010). Although
some industrial APS systems are able to do this, this ability is used rare. The stumbling-
block for this that each trade partner usually belongs to a numberof different supply chains.
To quote Hvolby and Steger-Jensen, “Each partner needs a plan which covers all their
operations and not a plan which only optimizes a subset of their operations” (Hvolby and
Steger-Jensen, 2010).

The serious difficulty for current APS system is the simulation in sophisticated supply
chain environment (de Santa-Eulalia et al., 2011). As an attempt to overcome this draw-
back, so-called distributed APS systems were proposed. Such systems use for simulation
the agent-based modeling approach, which “models the supply chain as a set of semi-
autonomous and collaborative entities acting together to coordinate their decentralized
plans” (de Santa-Eulalia et al., 2011). However, the distributed APS systems still are not
enough mature and should be seen rather as experimental ones.

There is also a shortcoming of APS systems of other nature. It is similar to troubles
with old-fashioned expert systems when users were not able to grasp reasons of conclu-
sions generated by a system and an explanation of chain of reasoning was required. APS
systems generate schedules automatically. Finite scheduling rules used for this aim usually
are very complex and difficult to understand (Hamilton, 2014). However, current APS sys-
tem present no explanation on what reasons is based the suggested schedule and managers
mistrust them.

The shortcoming of APS systems is also the existence of a number of gaps between the
theory of these systems and the industrial practices. For the discussion about these gaps
the reader is referred to Lin et al. (2007).

Finally, the current APS systems is still too expensive to SMEs due to high acquisition
and maintenance costs (Texeira and Coube, 2009).
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In summary, “the optimization of entire supply chains still remains an elusive problem,

especially if the objective is to integrate planning with scheduling in these supply chains”
(Grossmann, 2012).

3. Modeling and Implementation Challenges

Despite the relatively long APS systems history, the theory of these systems is rather in its
rudimentary phase. There exist a number of APS systems modeling and implementation
problems which should be investigated in more detail, theoretically sound solutions of
these problems should be designed and incorporated into the main theory of information
systems engineering. Bellow we discuss the most important APS systems modeling and
implementation challenges identified partly as a result of the study of scientific literature,
partly through an in-depth analysis of the experience gained during the development of
the PEN system.

Challenge 1: Probably, most important APS system modeling challenge is the de-
composition of APSP into sub-problems, selection sub-problems’ solution algorithms and
forming them into a cohesive ensemble that solves the whole APSP. This problem is also
the most fundamental one. To solve it, the question “How to design the possibly best
ensemble of collaborating algorithms required for a particular APS system?” must be an-
swered. The Chapter 4 examines this problem in detail and explains the meaning of the
term “an ensemble of collaborating algorithms”.

Challenge 2: Another important APS system modeling challenge closely related to
the first one is the division of labor among optimization, simulation and, possibly, other
approaches. The question “How optimization, simulation and, possibly, other planning
methods should be combined together in a particular APS system?” must be answered in
order to cope with this challenge.

Challenge 3: Finally, the last identified important modeling challenge is the combina-
tion of different kinds of models in a particular APS system. In other words, the question
“How to combine descriptive forecasting models (e.g. for forecasting future demand or
manufacturing costs), simulation models, optimization models, models modeling uncer-
tainty and abstract data models?” must be answered.

Challenge 4: The integration of APS and ERP systems is one of the most important
implementation challenges. In order to cope with this challenge, a number of complex re-
search questions must be answered: “What are the valid patterns of APS and ERP systems
collaboration, taking into account that ERP systems are MRP-based systems and APS sys-
tems use finite capacity scheduling approach and optimization?”, “What an architectural
solution can be used in a supply chain environment for integration of a particular APS
system with the variety of partners’ ERP systems?”, “What the collaboration and archi-
tectural patterns can be used to integrate APS system developed as an add-in to different
ERP systems the list of which is unknown in advance?”, “How data should be transferred
between ERP and APS systems?”, and “How the labor should be divided among APS and
ERP systems?”
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Challenge 5: The reference modeling of a particular APS system is another important
implementation challenge. It entails a number of complex research questions: “Should a
reference model for a particular APS system be hierarchical one or not?”, “What concep-
tual basis should be used to develop this model?”, “To which extent the reference model
should be platform-oriented?”, “Should it define also concepts which are required to de-
scribe various algorithms implemented in this APS system?”, “How to combine “best
practice” reference models with “system oriented” reference models and how communi-
cate clearly ideas and knowledge captured in the reference model to two such different
communities, namely, decision makers and engineers?”, “In which way a reference model
for a particular variable APS system should define the concepts that knowledge captured
in this model would be easy transformable into a specific model of a particular target
enterprise?”, and “Which notations are most appropriate to describe different issues in
a Reference Model document and how to define the semantic of concepts used in this
document?”

4. Integration of APSP Decomposition, Optimization and Simulation Algorithms

4.1. An Ensemble of Collaborating Algorithms

It became possible to implement APS systems only when the memory resident servers
have been developed. Such servers allow storing the entire supply chain planning engine
and its environment including optimization and simulation models, and all required data in
the internal memory. However, despite this and tremendous advances in the development
of hardware and sophisticated software, it is still impossible to solve APSP as a monolithic
optimization. This is impractical even in case when we aim to find only near-optimal
solution.

One of the simplest formulationsof APSP is given by Wei Tan and Behrokh Khosnevis:

“. . .given a set of n features which are to be processed on m machines with alterna-
tive process plans and other technological constraints for each feature, find a process
plan for each feature and a sequence in which features pass between machines and
a sequence in which features on the same part are processed such that it satisfies the
technological constraints and it is optimal with respect to some performance criterion”
(Tan and Khoshnevis, 2000).

This formulation is very abstract because it does not explain what concrete “techno-
logical constraints” must be satisfied. The simplest technological constrains are prece-
dence and available capacity constraints. Precedence constraints define which operation
sequences are technically feasible. Available capacity constraints describe the capacity
of each resource in a given time period. Note that available capacities vary over time.
For example the capacity of the whole plant in any period t depends on the operational
states of machines. It changes as machines fail or are under repair. If we assume that
all available capacities are stable and the only aim is to complete all orders in time,
the global optimization of all plans and schedules across the whole supply chain is still
practically impossible. The simplest (classical) scheduling problem for a one-plant en-
terprise is formulated as follows: “. . .the actual assignment of starting and/or comple-

tion dates to operations or groups of operations to show when these must be done if the
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manufacturing order is to be completed on time” (Blackstone, 2010). This problem is
constrained by (a) precedence constraints (sequencing) and (b) stable available capac-
ity constraints (deterministic processing times of all machines, no setups, no machine
breakdowns, no pre-emption and no cancellation). It is required to find the optimal tech-
nically feasible sequences of operations that meet capacity constraints. However, even this
problem is NP-hard. Real-world production scheduling problems are much more compli-
cated. For exhaustive discussion on this topic the reader is referred to (Herrmann, 2006;
de Carvalho and Haddad, 2012).

The above given APSP formulation states that the scheduling is only one among many
sub-problems of APSP. Therefore, the whole APSP is yet more complicated than any of
its sub-problem. However, in this formulation neither the network of production plants
of an enterprise nor the more a multi-site nature of a whole supply chain is taking into
account. Generally, the APSP can be very sophisticated. It can be formulated at different
abstraction levels taking into account a number of various constraints at enterprise level
as well as at plant level and considering a number of various optimization objectives.
The most popular objective is to minimize the makespan, i.e. total length of a schedule
(Zijm, 2000). However, a number of other objectives, for example, the maximization of
equipment utilization or the maximization of the probability of meeting the due date, is
also often used. Besides, APSP may be formulated for the multi-plant enterprises or even
for a whole multi-site supply chain. In short, we should consider not a one well-defined
planning and scheduling problem but a big family of quietly different production planning
and scheduling problems, including very complicated ones. For example, in a multi-plant
enterprise the manufacturing system is composed by a network of hierarchically integrated
production plants. Every plant has its own resources with different functions, processing
times and capabilities. However, for the reason that it is a part of network, its relation with
other plants is as important as its internal model (Alvarez, 2007; Gnonia et al., 2003).
Normally, the output from one plant becomes an input into another plant. In multi-plant
manufacturing system, it is necessary to consider also the outsourcing (Lee et al., 2002),
i.e. situations when “the same order can also be delivered to some other plant for assigning

to the resources in different locations” (Zhang and Gen, 2006). In other words, we have
some sequential and parallel machining processes structure that can be represented by an
AND/OR directed graph (Homem de Mello and Sanderson, 1990). For detail discussion
on the integrated planning and scheduling in multi-plant environment the reader is referred
to Kanyalkar and Kadil (2005).

From production planning perspective, an industrial multi-plant enterprise is a multi-
level manufacturing system, at each level of which local performance objectives are de-
fined (Behdani et al., 2010). These objectives are hierarchically interconnected and should
optimally contribute to the overall goal. Due the rather fuzzy relations between the local
and overall performance goals, the long time horizon and high abstraction level of the
overall goal, the APSP significantly grows in complexity. The main question that should
be answered is: “How to best operate a multi-plant enterprise and the separate plants at

the same time?” (Behdani et al., 2010).
Using representation of multi-plant manufacturing system by an AND/OR directed

graph, APSP for such enterprise can be formulated as a traveling salesman problem with
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precedence constraints (Moon et al., 2002; Oboulhas et al., 2005; Sung and Jeong, 2014).
The classical stand-alone traveling salesman problem is already NP-hard. It becomes even
more complicated with precedence or other additional constraints. Hence, in many cases
the overall APSP is very difficult, if it is considered as monolithic, and can be solved
only by some evolutionary algorithm or through hybrid approach that combines several
algorithms of a different nature.

In more sophisticated manufacturing environments (e.g. multi-product system, alter-
native machines, flexible operations’ sequences, etc), under the realistic assumptions, con-
strained by some additional constraints (e.g. multi-level product structure, multi-echelon
production, etc.) and with the objective function containing earliness and tardiness penal-
ties the APSP is even more complex. Besides, the scheduling problem depends on shop
type (flow shop, job shop, hybrid shop, etc.) (Tan and Khoshnevis, 2000).

To sum up, the integrated planning and scheduling problem cannot be solved as a
monolithic optimization problem (Phanden et al., 2013). Exact mathematical optimiza-
tion methods have been designed to find optimal solutions satisfying the given technical-
economic objectives. However they are time consuming and cannot solve real-world plan-
ning and scheduling problems in a reasonable time. Due to this reason, in most APS sys-
tems the mathematical optimization methods should be combined with some heuristic
optimization methods, including simulation and imitation based ones, which, according
to Cote and Laughton (1984), “have performed surprisingly well in their search for near-
optimal solutions”.

Simulation and imitation are kinds of heuristic methods. The necessity for simula-
tion methods arises from the fact that mathematical optimization models are based on the
restrictive assumption about the static nature of manufacturing systems. However, nei-
ther the dynamic characteristics of real-world manufacturing systems nor the stochas-
tic nature of abnormal situations such as machine failure can be properly modeled by
such models. Real-world manufacturing systems operate in a dynamic environment un-
der uncertainties. For this reason, optimal and near-optimal solutions searched by opti-
mization methods are often inadequate. On the other hand, the simulation models ex-
plicitly models inside (endogenous) as well as outside (exogenous) manufacturing system
aspects, but they are inadequate be used to find optimal solutions (Safaei et al., 2010;
Gnonia et al., 2003). Simulation methods are based on heuristics and, consequently, can-
not precisely implement complex decisions logic required to choose the best solution.
So, in general case, exact optimization and heuristic methods including simulation and
imitation ones should collaborate solving APSP.

In summary, APSP should be decomposed into a complex of sub-problems of manage-
able sizes and an ensemble of collaborating algorithms should be designed to solve these
sub-problems. By an ensemble of collaborating algorithms we mean a problem-oriented
arrangement of a collection of exact or/and heuristic optimization, constraint program-
ming, simulation, and imitation algorithms, which:

• implements some collaboration pattern or a composition of such patterns;
• is designed taking into account the computational resource constraints and the spe-

cific features of some subclass of APSP problems;
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• optimizes the overall performance of APS system under consideration; and
• seeks to find at least near optimal solution of APSP problem in a reasonable time.

In an ensemble, information is passed back and forth among the subproblems until an ac-
ceptable solution to the whole APSP is achieved. The idea of an ensemble of collaborating
algorithms is far not new. Its origins are in the seminal work of Minslry (1988), where he
in fact proposed to construct problem solving agents as compositions of interacting, sim-
pler subagents. This idea has been explored and developed further in a variety of different
fields by many authors, but, to the best our knowledge, was never formulated explicitly in
the context of APS systems.

The APSP can be decomposed into sub-problems in a number of different ways. By a
collaboration pattern we mean a kind of behavioral patterns, which describes an abstract
arrangement of solution algorithms for APSP sub-problems and a way they interact each
with other for some kind of APSP decomposition. Thus we have several categories (hier-
archical, iterative, etc.) of collaboration patterns. Any category describes the roles, which
corresponding algorithms play in the APSP solution process. Roles are allocated to sub-
problems. A role is specified by its goal (i.e. output requirements) and a solution method
(e.g., MILP or event-based simulation) of the sub-problem to which it is allocated. Algo-
rithms are assigned to roles during the design of an ensemble of collaborating algorithms
for a particular APS system. We call this problem a role assignment problem.

To the best our knowledge, the term “collaboration pattern” currently is used neither
in the context of APS systems nor in the context of mathematical programming theory.
Research papers on mathematical programming or on production planning and schedul-
ing usually address such the patterns as “problem decomposition methods”. Several other
terms with similar meaning are also in use. For example, in constraint satisfaction field the
term “algorithmic chaining” (Borrett and Tsang, 2009) is used to address the switching
from one algorithm to another during the problem solving process. Although algorithmic
chaining also deals with the arrangements of algorithms, these algorithms are arranged in
a pre-determined order. Besides, it is used for quite different purposes, namely, to improve
the overall performance of algorithms portfolio application (Huberman et al., 1993). Note
that an algorithm portfolio is a set of algorithms that are bundled together to increase over-
all performance and/or the quality of final results. The algorithmic chaining performs in
the following way. It starts the first algorithm from the arrangement. The switching mech-
anism, which is a part of the algorithmic chaining system, monitors the execution of this
algorithm and stops it when certain conditions occur. After this, the algorithmic chaining
starts the next algorithm. The same is repeated for each algorithm (Borrett and Tsang,
2009). Shortly, the purpose of the algorithmic chaining is not the same as the purpose of
a collaboration pattern. Not about the collaboration of algorithms is also the concept of
hybrid algorithm, which is defined as “a collection of heuristics, paired with a polyno-

mial time selector S that runs on the input to decide which heuristic should be executed to

solve the problem. Hybrid algorithms are interesting in scenarios where the selector must

decide between heuristics that are “good” with respect to different complexity measures”
(Vassilevska et al., 2006). However, both these concepts – algorithmic chaining and hy-
brid algorithm – as well as the concept of algorithms portfolio are useful and applicable
in solving the role assignment problem.



Advanced Planning and Scheduling Systems: Modeling and Implementation Challenges 595

Finally, the term “ensemble” can also be found in the context of algorithms portfolio
(Dietterich, 2000). According to this source, “An ensemble of classifiers is a set of clas-

sifiers whose individual decisions are combined in some way (typically by weighted or

un-weighted voting) to classify new examples. . . .ensembles are often much more accu-

rate than the individual classifiers that make them up”. Thus, in Dietterich (2000) this term
addresses an instance of algorithms portfolio (Kottho, 2012), which is designed to improve
the accuracy of results. So, the term “ensemble”, as is used in Dietterich (2000), has also
the other meaning than in our case. However, it can also be useful at the algorithms assign-
ing phase because an ensemble of collaborating algorithms should be designed keeping in
mind both the performance and the accuracy evaluated applying near-optimality criteria.

The design of the best or, at least acceptable ensemble of collaborating algorithms
required for a particular APS system is a serious implementation challenge. No standard
solution exists for this challenge. The nature of APSP depends on the specific of a partic-
ular industry, particular shop type, kind of integrated production planning and scheduling
problem and other factors. In terms coined by John R. Rice in his famous paper “The Algo-
rithm Selection Problem” (Rice, 1975), each particular APS system has its own problem
space, where the term “problem space” refers to a class of individual problems or in-
stances having the same form (Tovey, 2002). In our case, the problem space of particular
APS system is a subclass of the class of all APSP.

In the context of algorithm selection problem (ASP), the term “algorithm” can refer to
a system, a program, a heuristic, a classifier or a configuration (Kottho, 2012). An ensem-
ble of collaborating algorithms, like as software system, is a composition of algorithms
and in the context of ASP can also be addressed as an “algorithm”. Thus the role assign-
ment problem can be seen as a specific algorithm selection problem, in which the algo-
rithm space consists of several algorithm portfolios (optimization algorithms, simulation
algorithms, etc.). Portfolios are related to the roles and at least one algorithm should be
selected from each portfolio. All these algorithms should be composed together to form
an effective working ensemble of collaborating algorithms, which hopefully computes
near-optimal solution to the APSP. Note that in this context, the role assignment problem
should be considered as a functionality allocation problem, which, generally, is less un-
derstood than a resource allocation problem. Given that, in general case, a decomposition
of APSP can be multilevel (i.e. any sub-problem can be decomposed further) and that
collaboration patterns of different categories can be required at different levels. So, the
collaboration patterns for a particular APS system can be of hybrid nature and very com-
plex. Consequently, the role assignment problem often can be very hard. Moreover, the
algorithms of different nature are far not easily composable into the ensembles. Currently
there exists no systematic procedure to solve this problem. It is usually solved in an ad hoc
manner. Anyway, it is possible to compare, at least informally, the different alternatives
in functionality allocation against the chosen criteria. So, the question arises, what the
criteria and measures should be used to evaluate a quality of an ensemble of collaborating
algorithms.

On the basis of reviewed research works and our practical experience, we conclude
that the quality of an ensemble of collaborating algorithms should be evaluated according
to at least the following four criteria:
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Criterion 1: Efficiency criterion: how high is the computational cost of the selected
ensemble of collaborating algorithms? A theoretical measure to evaluate the efficiency of
an algorithm is its complexity in asymptotic sense. This measure can be generalized to
apply it also to the ensembles of collaborating algorithms. However, the complexity mea-
sure is of little usefulness for practical evaluation of computational cost of an ensemble.
It is so because usually, when evaluating an ensemble, it is important not to evaluate the
behavior of a particular ensemble for the whole problem space but only for some subset
of its realistic instances (Tovey, 2002). Besides, such ensemble almost always includes al-
gorithms, especially heuristic ones, for which computational cost varies greatly from one
instance of the problem space of given APS system to another (Huberman et al., 1993).
According to Huberman et al. (1993), such unpredictable variation in computational cost
can be characterized by a distribution describing the probability of obtaining each possible
computational cost value. Therefore, the mean or expected values of these distributions
can be used as an efficiency measure of an ensemble of collaborating algorithms.

Criterion 2: Finiteness criterion: what is the risk that the selected ensemble of collab-
orating algorithms for some instances of the APS system problem space will not produce
an acceptable solution in a reasonable time or even at all? This risk arises even in case of
some exact optimization algorithms. In case of simulation and other heuristic algorithms,
it exists almost always. According to Huberman et al. (1993), this risk can be character-
ized by the standard deviation of the distribution mentioned in the Criterion 1. We remind
that the standard deviation describes how likely it is that for particular instances of the
problem the computational cost will deviates from the expected one.

Criterion 3: Correctness criterion: how close to optimal are final feasible solutions
computed by APS system? An approximation ratio measure can be used to evaluate the
selected ensemble according to this criterion. For example, the average case or worst case
approximation ratio or both measures can be used. Approximation ratio can be absolute
or relative. The behavior of algorithms on instances with relatively large optimal value
can be evaluated by an asymptotic approximation ratio measure. For the definition of the
above mentioned measures the readers are addressed to Section 8 in Vidar (2005) and to
Epstein and van Stee (2008).

Criterion 4: Robustness criterion: in what degree the plans and schedules prepared by
an ensemble of collaborating algorithms are “able to undergo perturbations without being
invalidated” (Hebrard, 2007)? There are many definitions of the robustness. Generally, it
can be considered as an umbrella-concept for the whole family of related concepts, such
as reliability, stability, fault tolerance, adaptability, correctness, uncertainty processing,

risk-sensitiveness, etc. In the distributed environment it can be even understood as a safety.
Sometimes the robustness means the ability of an algorithm to continue working despite
abnormalities in input, calculations, etc.; sometimes the ability to produce the satisfac-
tory result when the constant parameters in the formulation of the problem are perturbed
(Chiang et al., 2007) or even the model of the problem is slightly changed. Robustness
becomes especially important when the problem is transient or unstable (Tovey, 2002). It
is also noteworthy that the trade-off between robustness and performance exists. The most
important approaches for evaluation of robustness are the sensitive analysis (Castillo et al.,
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2008), stochastic programming (Esmaeili et al., 2013), robust optimization (Mulvey et al.,
1995; Bertsimas et al., 2011), and fuzzy programming (Vidar, 2004). In our opinion, the
most promising approach to evaluate robustness of an ensemble of collaborating algo-
rithms is described in Gupta et al. (2006).

Criterion 5: Implementability criterion: how easy it is to compose the selected algo-
rithms and implement the obtained composition as an ensemble of collaborating algo-
rithms? The measures to evaluate an ensemble of collaborating algorithms according to
this criterion are time and amount of money. These measures, in turn, depend on the com-
petence of an implementation team, available implementation platform and many other
factors.

In addition, the quality of an ensemble of collaborating algorithms depends on the
proper selection of collaboration pattern because namely it determines the contribution of
each algorithm to the whole APSP solution process. In the context of APS systems, the
main idea of any collaboration pattern can be described as follows:

• APSP is decomposed into a number of sub-problems of lower dimension;
• each sub-problem is solved separately;
• a solution to the whole APSP is produced on the basis of obtained solutions by using

iteration, composition or some other process.

There are many kinds of collaboration patterns including hierarchical, incremental, iter-
ative, and recursive ones. The discussion on classification of collaboration patterns and
investigation of their properties is out of the scope of our paper. It is the area for special
research. Here, as illustrative examples, we discuss shortly only hierarchical, incremental,
and iterative patterns.

4.2. Hierarchical Collaboration Pattern

A hierarchical collaboration pattern is one of the most popular. It is used to imple-
ment various hierarchical production planning methods (Bitran and Tirupati, 1989;
Saad, 1990; Baumann and Dimitrov, 2008; Neureuther, 2004; Hax and Candea, 1984;
Hax and Meal, 1975). This pattern provides an interaction scheme between APSP sub-
problems that is analogous to the interaction scheme between activities in the well-
known systems development life cycle model (SDLC) – waterfall model (Royce, 1970;
Bassil, 2012). The planning and scheduling approaches, which are based on the hierar-
chical collaboration pattern, often are referred to as the waterfall-style methods (e.g. in
Myers et al., 2001) or, especially in the literature on decision making, as a rational com-
prehensive planning model (e.g. in Cabantous and Gond, 2011). The philosophical roots
of this approach are in logical positivism.

A hierarchical collaboration pattern usually is used to decompose the APSP into three
sub-problems: strategic or long term planning, tactical or midterm planning, and oper-
ational or short term planning. However, sometimes the ASPS is decomposed only into
two – planning and scheduling – sub-problems or into more than three sub-problems. In
any case, the whole APSP solution process proceeds in a top-down manner. Solutions to
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higher level sub-problems impose the constraints to satisfy and/or the objectives to attain
on lower level sub-problems. In turn, the solutions to lower level sub-problems are con-
sidered as a feedback to evaluate the quality of higher level solutions. If the compatibility
between the higher and lower levels solutions is violated, an emergence procedure, which
changes higher level solution, should be triggered (Dauzere-Peres and Lasserre, 2003).

The plans, which are produced by solving sub-problems of different level, differ in
the scope of the planning activity, planning horizon, level of detail, and the authority
and responsibility of the manager in charge of executing the plan (Bitran and Tirupati,
1989). At the upper level we have long time strategic plans, at the bottom level – detailed
schedules. The higher and lower level plans are related by the aggregation/disaggregation
relation-ships (Axsater and Jonsson, 1984). So, the higher level plans are “disaggre-

gated in time and detailed by products and items, taking into account some basic con-

straints originating from operational levels” (Hennet, 1999). To solve each sub-problem
is simpler than the whole ASPS because the ‘details’ that are not relevant to the level of
this sub-problem are ignored. In traditional hierarchical approach, the upper level sub-
problems are typically modeled as linear or mixed integer-linear programming (MIP)
problems (Chen and Ji, 2007; Kanyalkar and Kadil, 2005) and the bottom level sub-
problems as convex rucksack problems (Bitran and Hax, 1981). However, the hierarchi-
cal collaboration pattern is quite general. It can be implemented using a number of dif-
ferent aggregation and disaggregation schemes and modeling the sub-problems by vari-
ous optimization models. Its implementations may also differ in how the different level
sub-problems (optimization models) interact each with other. The basic shortcoming of
hierarchical collaboration pattern is its post-positivist point of view, mainly, the focus
on predictability. It is supposed that the manufacturing process is basically predictable
and the plans are self-contained. It means that it is possible to predict everything al-
ready at the top level of hierarchy and to prepare such plans which can be treated as
formal specifications that should be scrupulous implemented by lower level plans and
schedules. Indeed, it is impossible to produce such schedules, which are “consistent

with the aggregate plan solution, feasible for implementation and optimal in minimizing

costs and backloggings” (Saad, 1990). Plans are “context-dependent, dynamic entities,

which are affected by moment-to-moment changes in the environment” (Maravelias and
Sung, 1994) and carefully prepared higher level plans quickly become obsolete. Gen-
erally, the pattern suffers from the sub-optimal or infeasible solutions (Kanyalkar and
Kadil, 2005). It is mostly because of the unsound feedback process from lower level
sub-problems back to higher level sub-problems (Aardal and Larsson, 1990). To the best
our knowledge, a feedback process, which is based on sound mathematical decomposi-
tion principle and is able to guarantee the feasibility and the optimality of the overall
production plan, is still under development. Nevertheless, in some APS systems, espe-
cially in SME-oriented ones, such patterns may be successfully applied (Saad, 1990;
Baumann and Dimitrov, 2008). Besides there exist a rich body of literature considering
how to apply hierarchical collaboration pattern decomposing APSP in various more so-
phisticated ways. For example, in Quadt and Kuhn (2005) the APSP is decomposed along
the production stages. This decomposition is used to solve an integrated lot-sizing and
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scheduling problem for flexible flow lines. It decomposes APSP into a bottleneck plan-
ning, schedule roll-out and product-to-slot assignment subproblems. A bottleneck plan-
ning subproblem is being solved separately from the other subproblems, which afterwards
both are solved simultaneously. However, when preparing a schedule for the bottleneck
stage, the other production stages are implicitly taken into account. Bottleneck planning
subproblem is solved using a heuristic procedure, which is based on a mixed integer pro-
gramming model. This model models explicitly only part of problem elements and ap-
proximates the other elements. The schedule roll-out subproblem is constrained by the
number of machines per product family and the batch-sizes predetermined by the bot-
tleneck planning subproblem. A schedule roll-out subproblem plans the production at the
product families level and as-signs a production time and a machine to each product family
unit (Quadt and Kuhn, 2005). Finally, the product-to-slot assignment subproblem disag-
gregates the product families and determines “how many and which machines to set up and

when to produce the individual products” (Quadt and Kuhn, 2005). It is constrained by
the machine/time slots predetermined by the schedule roll-out subproblem. Due to these
constraints, the subproblem can be solved separately for each product family. It is decom-
posed further into four lower level sub-problems, which determine respectively “(1) how
many machines to set up for each specific product, (2) in which batch size, (3) when in the
given time window and (4) on which of the predetermined machines to produce the prod-
uct units” (Quadt and Kuhn, 2005). These sub-problems are solved using nested genetic
algorithms.

This example illustrates that the structure of a particular hierarchical collaboration
pattern can be very complex and that, in general case, the design of such a pattern can be
a great challenge.

4.3. Incremental Collaboration Pattern

The philosophy behind this pattern is analogous to the philosophy behind SDLC incre-
mental model (Larman and Basil, 2003; Olsen, 2006; Northover et al., 2008; Lindblom,
1959). The roots of incrementalism, in turn, are in the epistemology of pragmatism (Hal-
ton, 2004). In contrast with deduction based positivism, pragmatism uses abductive rea-
soning. The incremental approach is employed in various application domains and is re-
ferred to by a number of different terms (Ansari et al., 2013), for example: “continu-

ous improvement” (Nicholas, 2011), “piecemeal engineering” (Popper, 2003), “bounded

rationality” (Simon, 2007), “muddling through” (Lindblom, 1959), “disjointed incre-

mentalism” (Braybrooke and Lindblom, 1963), “logical incrementalism” (Quinn, 1980),
“Kaizen” (Lolidis, 2008).

The main idea of the incremental approach is vertical separation of concerns (SoC)
(Dijkstra, 1982). A concern is a matter of interest (Glinz, 2007). In Adda et al. (2010),
SoC is defined as “a general problem solving heuristic that consists of solving a problem

by addressing its constraints, first separately, and then combining the partial solutions

with the expectation that, (1) they be composable, and (2) the resulting solution is nearly

optimal”. So, it is a technique for managing the complexity by decomposing because it
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breaks the complexity of a problem into loosely-coupled, easier to solve, sub-problems
with the hope that their solutions can be relatively easy composed into the solution to the
original problem (Adda et al., 2010). Problems can be decomposed either horizontally or
vertically. An example of a horizontal decomposition is a hierarchical one which decom-
poses the problem into a number of horizontal abstraction levels. A vertical decomposition
splits the problem into a number of loosely coupled vertical slices that crosscut horizon-
tal abstraction levels. Vertical slices correspond to the sub-problems which, in ideal case,
should be solvable independently, without concern about other sub-problems.

There are several kinds of vertical decomposition. A simplest one – we call it proper
vertical decomposition – is based on the separation concept in the sense as in Geoffrion
and Marsten (1972).2 According to this work, a set of sub-problems P1,P2, . . . ,Pn of
an optimization problem P with a set of feasible solutions F(P) is the proper vertical
decomposition of this problem if the following conditions hold:

1. ∀x((x ∈ F(P)) → ∃xi((xi ∈ F(Pi))&(xi = x))&∀j (((x = xj )&(xj ∈ F(Pj )) →

(i = j)))),
2. ∀i((xi ∈ F(Pi)) → ∃x((x ∈ F(P))&(xi ∈ x)&∀j ((xj ∈ F(Pj ))&(xj = x)) →

(i = j))),
where 1 6 i 6 n, 1 6 j 6 n. In other words, the sequential decomposition defines the
partition F(P1),F (P2), . . . ,F (Pn) on the set F(P). The optimal solution to problem P

is the best solution found to any sub-problem. Unfortunately, the proper vertical decom-
position of the APSP is possible only when its model has a special structure. For example,
it can be done if APSP can be formulated as an integer programming problem with con-
tradictory constraints defined for some integer variable (Geoffrion and Marsten, 1972)
or as a nonlinear convex optimization problem for which both objective function and all
constraint functions are additively separable ones. An additively separable function is a
function which can be expressed as a sum of single variable functions. Therefore, the
proper vertical decomposition approximates the original problem by a linear program.

More elaborated kind of vertical decomposition is partially ordered decomposition
described in Karimian and Herrmann (2009).3 Applying this decomposition to the prob-
lem P , we obtain a partially ordered set of sub-problems, in which “[t]he solution to one

subproblem will provide the inputs to one or more subsequent subproblems” (Karimian
and Herrmann, 2009), that is, the solution to any sub-problem, except the last one, is used
to solve next sub-problem. It means that, solving a sub-problem, decisions, which already
were made solving previous sub-problems, are taken into account. However, the order-
ing of the sub-problems does not necessarily reflect the importance of their objectives.
Nevertheless, the solution is constructed incrementally.

The objective function F of the problem P in any sub-problem Pi should be replaced
by a surrogate objective function Fi . Surrogate functions are obtained, removing decision
variables that are not relevant to this sub-problem and will be defined later in other sub-
problems, and making other application-oriented modifications. The constraints in any

2Currently, in the literature on mathematical programming the term separable programming is mostly used.
3Authors use the term separation and reserve the term decomposition for the cases when sub-problems are

coordinated by a special second-level sub-problem usually referred to as a master problem.
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sub-problem also should be modified appropriately. It means that the vertical partially
ordered decomposition is highly informal. Defining surrogate objectives and appropri-
ate constraints may require informal domain knowledge “about which issues are the most

important ones and which solutions are usually poor ones” (Karimian and Herrmann,
2009). This is a disadvantage of this approach. Another disadvantage is that such decom-
position not in all cases produces an optimal solution to the original problem P . On the
other hand, due the partial ordering of sub-problems, some sub-problems can be solved
in parallel. This is an advantage of this approach.

It seems that in APS systems the vertical partially ordered decomposition currently
rather is not used. At least, we did not find any work on this topic. Nevertheless, this
approach is interesting as an example of the simplest incremental decomposition.

The most challengingproblems arise in the vertical separation of concerns when global
and/or crosscutting concerns are present. Global concerns are concerns that affect the
whole problem P or its significant part (Aldrich, 2000). Examples of global concerns are
complicating variables and complicating constraints. Complicating variables are those
which prevent a straightforward solution of the APSP by blocks (Conejo et al., 2006). For
example, in the context of APSP with integer and continuous variables, integer variables
usually are considered as the complicating ones because treating integer variables is much
more complicated than treating continuous variables. Complicating constraints are those
that involvevariables from different blocks of the constraints matrix and, like complicating
variables, also prevent a straightforward solution of the APSP by blocks (Conejo et al.,
2006). Crosscutting concerns are those that cross cut functional concerns of the prob-
lem P . Mainly, they are some algorithmic properties. An example of crosscutting APSP
concern is robustness of algorithms. Both kinds of concerns prevent the decomposition
of the problem P into completely independent sub-problems implementing different func-
tional concerns but should be handled quietly different. Crosscutting concerns should be
either handled in a centralized manner or scattered throughout functional concerns. In the
context of software engineering, usually so-called aspect-oriented (AO) techniques (Sol-
berg et al., 2005) are used for this aim. There exist a number of such techniques, includ-
ing weaving-based, interception-based approaches, dependency injection, etc. Using AO
techniques, crosscutting concerns are automatically weavedwith separable functional con-
cerns, injected into these concerns or processed in each functional concern after or before
it intercepts some event. However, these approaches are rather implementation-oriented,
based on specific linguistic and meta-linguistic mechanisms. The body of literature con-
sidering how to adapt these techniques for the algorithmic level and apply designing an
ensemble of collaborating algorithms currently is miserable.

There are several approaches how to handle global concerns. All these approaches
are based on the relaxation concept (Geoffrion and Marsten, 1972) and decompose the
original problem P into smaller sub-problems which are coordinated by so-called master
problem. Often it is referred as a bi-level decomposition.4 The convergence towards the

4Many authors (e.g., Conejo et al., 2006) use the term “bi-level decomposition” in more narrow sense,
namely, to address the case when evaluation of a constraint function requires to solve its own optimization
problem. So, the original problem is decomposed into two optimization problems. “Nevertheless, the structure

of the problem suggests a Benders type decomposition mechanism” (Conejo et al., 2006).
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global solution is ensured by an iterative procedure (Vidar, 2011), if global and fast local
convergence of this procedure is proven. We consider this procedure as an incremental
one because the initial simplified problem P0 is complicating at each iteration, step-by-
step taking into account additional global concerns. In general, the difference between
incremental and iterative optimization procedures can be explained in the following way:
an incremental procedure starts from an initial simplified problem instance P0 of the orig-
inal APSP, constructs a series of its more and more complicated instances P0,P1, . . . ,PN ,
finds a feasible solution to each instance Pi , and, starting from a prototype solution x0 to
the problem P and keeping track of current optimum, generates a sequence feasible solu-
tions x0, x1, . . . , xN until the optimal solution to the problem P has been obtained, or, in
other words, until PN becomes equivalent to P (the equivalence between P and PN opti-
mizers must be shown (Alexandrov and Lewis, 1999)); an iterative procedure starts from
an approximate trial solution x0 to the APSP and generates a sequence gradually refined
solutions x0, x1, . . . , xN until a predetermined level of precision has been reached. Thus,
an incremental optimization procedure is one, in which “some of the constraints relax over

time. The goal is to find a sequence of feasible solutions, one per time step, such that later

solutions build on earlier solutions incrementally” (Sharp, 2007).
As mentioned above, bi-level decomposition decomposes APSP into a master (or root)

problem and relaxed problem which is decomposed into one or more sub-problems. A re-
laxed problem is one for which: (a) any solution to the APSP corresponds to a feasible
solution of relaxed problem; (b) solutions to the relaxed problem find the correspond-
ing solutions to the APSP. It is easier to solve than the original problem because it is
smaller and usually has special properties such as convexity, sparsity, or network struc-
ture, which can be algorithmically exploited (de Miguel, 2011). Examples are APSP with
the constraint matrix of bordered block-diagonal or staircase form. The recent is common
in multi-period and in multi-stage planning, including the stochastic planning approaches
(Lübecke, 2010). The APSP is relaxed by deleting global concerns. Deleted concerns are
left in the master problem, but are defined implicitly, for example, by the set of basic feasi-
ble solutions and unbounded directions of the sub-problems (Tebboth, 2001). Local vari-
ables and constraints are kept within correspondingsub-problems.According to Gunnerud
(2011), “[t]here are two aspects to consider when choosing which constraints to place in

the sub-problem. It should be easy to solve since it is re-optimized several times, and

it should provide good quality bounds on the intermediate solutions”. In this way the de-
composition separates global and local concerns. For example, enterprise-wide constraints
can be separated from shop floor level constraints or coordination between machines con-
straints can be separated from sequencing constraints that restrict the construction of a
schedule for each machine (Gelinas and Soumis, 2006). The master problem coordinates
the sub-problems and ensures that the global constraints are satisfied (Tebboth, 2001). In
some respects, it is equivalent to the original APSP, but it gives better bounds when its re-
laxation is solved than when the relaxation of the original APSP is solved (Vanderbeck and
Wolsey, 2010). Its “objective and/or constraint functions are obtained using information

gathered at subproblems solutions. At each iteration of the optimization algorithm solv-

ing the master problem, all of the N subproblems are solved and information is exchanged
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between the master problem and sub-problems” (de Miguel, 2011). Usually by solving
the master problem we obtain a solution to the original problem (Tebboth, 2001). How-
ever, the existence of globally and fast locally convergent optimization algorithms should
be proven for the proposed master problem as well as for its sub-problems (de Miguel,
2011). It is possible only in cases when APSP has some properties (e.g. non-degeneracy,
smoothness) and when these properties are also preserved in the proposals master problem
(Murray and Prieto, 1995). There are a number of propositions how to construct such mas-
ter problems. If the sub-problemsare solved using heuristics, the solution to the APSP may
be not necessary optimal. Constraint programming, genetic algorithms and other heuris-
tic approaches can be used to solve sub-problems. In some cases, sub-problems can be
decomposed further applying any kind of the above described decomposition approaches.

The bi-level decomposition allows us to solve some kinds of APSP in a decentralized
or distributed fashion what leads to a significant simplification of the solution procedure.

The general bi-level decomposition procedure for the APSP optimization can be de-
scribed in a following way:

1. to relax the APSP, i.e. to drop global issues;
2. to decompose the relaxed problem into sub-problems;
3. to abstract from APSP an easy solvable master problem (initial approximation of

APSP), to prove its equivalency to the original APSP including a preservation of
properties that ensure global and fast local convergence, to chose a coordination
method;

4. to restrict the initial master problem (it is necessary because the initial master prob-
lem includes all global concerns that are defined implicitly and for this reason it is
far more large than the original problem);

5. to solve the restricted master problem and consider the obtained result as a first
“prototype” solution x0 to the APSP;

6. using the “prototype” solution, to solve all sub-problems;
7. using the solutions to sub-problems as the feedback, to complicate the current mas-

ter problem (i.e. to include in the master problem some additional global concerns
or, in other words, to improve the approximation of the APSP);

8. to solve a new master problem and check a new “prototype” solution on the opti-
mality;

9. if the predefined approximation ratio is achieved, the “prototype” solution is to be
considered as the solution to the whole APSP, else go to the step 6.

In an ideal case, the process converges in the sense that the final solution is best one
for the master problem as well as for any sub-problem, however, not necessary the “best”
always means the “optimal”. Even worse, some of bi-level decomposition algorithms
may fail to converge even in cases when the starting point is very close to the optimizer
(Demiguel and Nogales, 2005).

Due to repetition, bi-level decompositions are less efficient than direct methods. In-
stead of solving the original APSP with global concerns, there are solved repetitively two
problems: a master problem (a simple one) and a relaxed problem (all sub-problems). For
LP problems, except some special cases, this approach usually is inefficient but often it is
worth to be used to many other convex optimization problems including MIP problems.
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There are two main kinds of bi-level decomposition: primal and dual. Primal decompo-
sition decomposes original (primal) problem; dual decomposition decomposes its dual –
mostly, Lagrangian dual – problem. If global concern is interpreted as a re-source, then in
the primal decomposition the master problem allocates to each sub-problem an amount of
resource and in the dual decomposition sets a price for the re-sources. In the recent case,
the sub-problem depending on the price decides itself what amount of resource it requires
(Chiang et al., 2007). Yet, in the primal decomposition, the master problem is responsi-
ble for the proper allocation of the global resources and in the dual de-composition – for
producing the best pricing strategy. Primal decomposition is preferred when global con-
cerns are stated as global variables; a dual decomposition – when they are stated as global
constraints. However, direct primal and dual decompositions are not always possible. So,
sometimes more sophisticated decomposition techniques should be used, for example, the
number of dual variables firstly may be reduced by reparameterization and then the dual
bi-level decomposition can be done.

Classical examples of bi-level decomposition are the Dantzig–Wolfe decomposition
(DWD) (Gunnerud et al., 2010; Pittman et al., 2007; Shapiro, 1993; Dantzig and Wolfe,
1960), and the Benders decomposition (Benders, 1962; Floudas, 1995; Balas, 1983;
Taskin, 2010; Olsen, 2012; Aardal and Larsson, 1990). They both have a number of
modifications including the reduced variant of DWD (RDWD) (Stadtler et al., 2014),
the DWD versions for a general distributed computing environment (Lyu et al., 2004;
Rios and Ross, 2010), the generalized Benders decomposition (Geoffrion, 2006), and
the Logic-Based Benders Decomposition (LBBD) (Hooker and Ottosson, 2003; Hooker,
2007). In the context of production planning and scheduling, the Dantzig–Wolfe decom-
position is also known as a price-directed decomposition and the Benders decomposition –
as a resource-directed decomposition (Shapiro, 1993). The first is a special case of the col-
umn generation approach and the second is a special case of the row generation approach.
In mathematical programming theory, both approaches are already well-investigated and
understood. For solving linear problems, the classical DWD “did not perform better than

the Simplex method” and, consequently, is not competitive, but it “is a real winner in the

context of integer programming” (Lübecke, 2010).
Let Nt be a set of sub-problems of an initial set N of all sub-problems. In case when,

applying the classical DWD, at the iteration t only sub-problems from Nt satisfy the op-
timality condition, the step 7 of the above described algorithm includes additional global
variables into the basis of reduced master problem by including columns for every from
Nt sub-problems. The RDWD reduces the number of sub-problems by updating the co-
efficients of the reduced master problem. As a result, the number of iterations decreases,
because the RDWD, differently from classical one, does not compute the optimality condi-
tion for every sub-problem at the same time, but stops computing the optimal solution for
a sub-problem when this satisfies the optimality condition, even if the other sub-problems
do not provide an optimal solution (Stadtler et al., 2014). Consequently, the solution is
suboptimal. On the other hand, this approach for LP problems does not affect the con-
vergence. So, computing the suboptimal solution guarantees the feasibility and stability
(Stadtler et al., 2014).



Advanced Planning and Scheduling Systems: Modeling and Implementation Challenges 605

LBBD generalize the classical notion of duality and defines an inference dual problem
for any optimization problem (Hooker and Ottosson, 2003). An inference dual problem
is solved by proving the optimality using an appropriate logical formalism. Solutions to
sub-problems are obtained by determining the conditions under which the proof remains
valid. LBBD is widely used to solve a variety of planning and scheduling problems. For
a more on these applications the reader is referred to Hooker (2007).

In summary, a design of an ensemble of collaborating algorithms which inter-act ac-
cording to the scheme provided by an incremental collaboration pattern is a very complex
task. Usually there are several different ways to decompose a given APSP. Different bi-
level decompositions vary in efficiency, robustness, and other characteristics (see Table 1).
Even for a given decomposition, a master problem can be constructed differently. In ad-
dition, different sub-problems solution methods, including constraint-based approaches,
simulation and other heuristics or even meta-heuristics, can be chosen. Finally, a feasibil-
ity study should be done and implementability of the ensemble should be investigated in
detail.

4.4. Iterative Collaboration Pattern

An iterative collaboration pattern (Dauzere-Peres and Lasserre, 2003; Helber and Sahling,
2010; Almeder, 2010) decomposes the APSP into two sub-problems, mostly into planning
and scheduling sub-problems. However, the philosophy behind the iterative collaboration
pattern essentially differs from the philosophy behind the hierarchical or behind the in-
cremental collaboration patterns. The sub-problems interaction scheme provided in this
pattern is similar to the activities interaction scheme defined by an iterative (evolutionary)
systems life cycle model (May and Zimmer, 1996; Patton and Jayaswal, 2006). However,
typically the pattern defines only two-stage iterative process. It is assumed that a complex
interplay there is between both sub-problems. Differently than in the hierarchical pattern,
these sub-problems are not considered as higher (master) level and lower (slave) level sub-
problems but as two peer partners both equally contributing to the overall APSP solution
process. An iterative process starts with solving the first sub-problem. This sub-problem
is solved under assumption that the other sub-problem is already solved and its solution
is already known. An optimal solution of the first sub-problem is produced under this as-
sumption. The obtained solution is an input of the second sub-problem. If when solving
this sub-problem the assumption done in the first sub-problem is accepted, the solution
process is finished. Otherwise a new iteration of the solution process starts. The solution
of the second sub-problem becomes an input to the first sub-problem and its solution again
becomes an input to the second sub-problem. Thus, the pattern generates a sequence of
improving approximate solutions of the overall APSP until some convergence criterion
is satisfied and an optimal or near-optimal solution is produced. Of course, the APSP
should be decomposed into sub-problems in such a way that a sequence of the approxi-
mate solutions would be converging to a stable solution. For example, in Dauzere-Peres
and Lasserre (2003) the planning sub-problem is modeled using continuous variables,
whereas the scheduling sub-problem is modeled using discrete variables. The planning
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Table 1
Most important bi-level decomposition approaches.

Applicability Efficiency Convergence

Benders
decomposition
(Benders, 1962)

To problems with global vari-
ables whose objective and
constraint functions are lin-
ear in the local variables.
Is widely used in the APS
systems. Requires “that the

sub-problem be a continu-

ous linear or nonlinear pro-

gramming problem” (Hooker,
2007).

Inefficient for LP problems,
worth to be used for MIP
problems Under typical con-
ditions, is globally and fast lo-
cally convergent.

Generalized
Benders
decomposition
(Geoffrion, 2006)

To problems whose objective
and constraint functions are
convex in the local variables.
Is widely used in the APS sys-
tems.

Efficient only when the objec-
tive and constraint functions
are separable with respect to
global and local variables.

Is globally and fast locally
convergent to approximate
solution.

Logic-Based
Benders
decomposition
(Hooker and
Ottosson, 2003)

To any class of optimization
problems, but a proof scheme
and sub-problems solution
method must be devised for
each class. Enables generic
solvers to be used as sub-
problem solvers. Is widely
used in the APS systems.
Provides a framework for
combining MILP and con-
straint programming (CP)
techniques. However, “pro-

vides no standard scheme

for generating Benders cuts”
(Hooker, 2007).

It is possible to use spe-
cial structure of the sub-
problems, what is impossible
in the traditional and general-
ized Benders decomposition
approaches. Due to this
possibility, a solution of sub-
problems can be significantly
more efficient. However,
techniques to solve master
problem and sub-problems
are specific for each class of
optimization problems.

Convergence rate depends on
a problem structure (Hooker,
2005) and may be unpre-
dictable. Integrated MILP
and CP framework obtains
probably optimal solutions.
The algorithm “can be ter-

minated at almost any point

with a feasible solution and a

lower bound on the optimal

value” (Hooker, 2007).

Dantzig–Wolfe
decomposition
(Dantzig and
Wolfe, 1960)

To LP, IP and MILP problems
with global constraints. There
are several methods to gen-
eralize DWD to MILP. For
LP problems, except solving
in parallel environment, is not
competitive with the standard
Simplex method, because the
DWD suffers from the tailing
of effect (slow convergence at
the end of the process). DWD
can be combined with heuris-
tics, which can “be used to
construct or improve primal
and dual solutions as often
as it seems useful” (Lübecke,
2010).

Sub-problems are mutually
independent LP problems,
which can be solved in paral-
lel. The parallelism is coarse
grained and ideally suited to
networks of serial computers.
Considering that the work
to solve the sub-problems is
not dominated by the work
to solve the master problem,
this parallelism is likely to
be efficient (Tebboth, 2001).
The algorithm can be speed
up solving sub-problems by
heuristics.

Is globally and locally conver-
gent. For convex problems,
if there exists an initial re-
stricted master problem with
a feasible LP relaxation. Due
to the accessibility to a dual
bound of master problem, it
is possible to terminate al-
gorithm, when desired ap-
proximation ratio is reached
(early termination) (Lübecke,
2010).

Tammer’s
decomposition
(Tammer, 1987)

To non-degeneratea non-con-
vex problems with global
constraints. The usage in the
APS systems is unknown.

Algorithm fails when it co-
mes to a value of global vari-
ables for which one of the
sub-problems is infeasible.

Global convergence is not
proven. Fast local conver-
gence under restrictive non-
degeneracy assumption.

(continued in next page)
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Table 1
(Continued)

Applicability Efficiency Convergence

Collaborative
optimization
(Braun, 1996)

To non-convex problems with
global variables. Objective
functions in sub-problems
should be quadratic penalty
functions.

It is required to solve master
problem for a sequence pen-
alty parameters which tend
to infinity. For large values
of this parameter, inefficiency
may be expected (Murray,
1971).

Global convergence cannot
be proven. Fast local conver-
gence if objective functions in
all sub-problems are reformu-
lated and master problem be-
comes smooth in the neigh-
borhood of the minimizer (de
Miguel, 2011).

aAn n-dimensional problem is non-degenerate if the number of active (linearly independent) constraints is not
greater than n (Bertsimas and Tsitsiklis, 1997).

algorithm directly considers the sequencing decisions while computing the lot sizes. It
solves the planning sub-problem for a fixed sequence of operations on the machines. This
sequence is generated by an internal procedure of the planning algorithm. This procedure
may implement any scheduling algorithm but this algorithm should be consistent with
the main scheduling algorithm used to solve the scheduling sub-problem. The scheduling
algorithm solves the scheduling sub-problem for the fixed sizes of lots. To improve the
production plan, the algorithm aims to find a sequence of operations on machines which
is better than what that was assumed by planning algorithm. The convergence criterion
is “that all jobs end on time and that operations end strictly before the end” (Dauzere-
Peres and Lasserre, 2003) of the period of time associated with these jobs. The planning
sub-problem is modeled as a LP problem. The scheduling sub-problem is considered as
combinatorial optimization problem. The iterative process searches not for an optimal
plan and schedule, but for a globally optimal and feasible production plan.

There is proposed a great number of different variants of iterative pattern. Often it
is used to combine heuristic optimization method with mathematical programming pro-
cedure which iteratively enhances an initial feasible solution find by this method. For
example, in Almeder (2010) the pattern combines an ant-based algorithm with an algo-
rithm for exact solution of mixed-integer linear programs. The hybrid algorithm is de-
signed to solve small and medium-sized problems to determine production schedules as
part of the material requirements planning (MRP) process. In Toledo et al. (2011) the
pattern combines a multi-population genetic algorithm and fix-and-optimize heuristic
procedure. The hybrid algorithm is designed to solve the Multi-Level Capacitated Lot
Sizing Problem (MLCLSP). The GA defines binary variables for MLCLSP formulation
and the best solution found (individual) is also improved by a fix-and-optimize heuris-
tic.

5. Conclusions

The recessions of recent decades, rapidly evolving and changing markets, permanently
growing competitive pressures, increasing competition for resources, limited capital bud-
get, increasingly complex regulatory environments, and dramatic increase in capital ex-
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penditures and operating costs force the industry to continuingly reduce production time-
lines and costs without loss in quality, and to improve plant flexibility. The traditional
ERP-based Enterprise Information Systems (EIS) with their focus on transaction process-
ing related business aspects cannot cope with these problems. They paid limited attention
to the integration of planning and scheduling activities, cannot simultaneously take into
account the constraints at both enterprise and plant levels, consider materials and capacity
issues together, integrate production, distribution and logistics management issues, and
even more-to prepare optimal or near optimal plans and schedules. The concept of EIS
should be rethought. Namely, the optimization of plans and schedules for the variety of
enterprise’s business and manufacturingactivities, and the maintenance of their optimality
taking into account the permanently changing external and internal state of affairs should
be considered as the main goals of EIS. All the more reason for this is that advances in
computing technology and in data processing methods and optimization techniques make
the optimization of planning and scheduling problems feasible. It means that advanced
planning and scheduling (APS) system, supported by one or more ERP systems acting as
sub-ordinate transaction-processing systems, should become the dominant component of
EIS. The shift from ERP-dominant EISs to APS-dominant EIS is already underway more
than ten years.

Despite the relatively long history APS systems, the theory of these systems is still
rather in rudimentary phase. Although there is a rich body of literature on APS-oriented
optimization models as well as, methods and procedures exists, a theoretical framework al-
lowing the design of an ensemble of collaborating algorithms for a particular APS system
is still lacking. The specific APS systems modeling and implementation problems of also
are only poorly examined. For example, a significant limitation of current APS systems is
to cope with uncertainties. Another problem-their ability to optimize plans across the trade
partners in the supply chain-still remains a great challenge. All such problems should be
investigated in more detail, theoretically sound solutions of these problems should be de-
signed and incorporated into the main theory of information systems engineering. In our
opinion, it is possible to develop the general theory of APS systems because they form a
family of congenerous systems even if they are industry-specific and differ in many aspects
including planning concepts, tasks, methods and optimization procedures. This family is
characterized by shared commonalities, namely, business objectives, problem domains,
typical problems, and typical features.

The present paper briefly discusses and assesses the current state of the field and
sketches the vision of general APS systems theory. It formulates the research questions
that should be answered by this theory and investigates how to design the possibly best en-
semble of collaborating algorithms required for a particular APS system. Special attention
is paid to the separation concerns problem and to the decomposition of integrated plan-
ning and scheduling optimization problem into a complex of sub-problems of manageable
sizes. The paper examines the hierarchical, incremental, and iterative collaboration pat-
terns from the design of an ensemble of collaborating algorithms point of view. The main
idea suggested is that APS systems should be designed by combining the collaboration
patterns and implemented by an ensemble of collaborating algorithms. The quality of the



Advanced Planning and Scheduling Systems: Modeling and Implementation Challenges 609

ensemble should be assessed by applying efficiency, finiteness, correctness, robustness,
and implementability criteria.
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Moderniosios planavimo ir tvarkaraščių sudarymo sistemos:
modeliavimo ir realizavimo problemos

Audronė LUPEIKIENĖ, Gintautas DZEMYDA, Ferenc KISS, Albertas CAPLINSKAS

Straipsnis apibendrina pastarųjų 20 metų tyrimus moderniųjų planavimo ir tvarkaraščių sudarymo
(PTS) sistemų modeliavimo ir realizavimo srityje. Jame aptariama šiuolaikinė tokių sistemų kon-
cepcija ir išryškinamos modeliavimo ir realizavimo problemos, kurias tenka spręsti jų kūrėjams.
Dalis šių problemų suformuluota analizuojant literatūrinius šaltinius, kitos – apibendrinant auto-
rių patirtį, įgytą kuriant pramoninio pobūdžio sistemą „Gamybos efektyvumo navigatorius“. Darbo

mokslinis naujumas yra bendradarbiaujančių algoritmų ansamblio samprata. Tai svarbus indėlis į

besiformuojančią PTS sistemų teoriją.


